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Noise-enhanced heterodyning in bistable systems
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A new form of heterodyning is reported in which a heterodyne signal at the difference frequency
between an input signal and a reference signal can be enhanced by adding noise. The underlying
mechanism is closely related to that of stochastic resonance. The dependences of the heterodyne
signal and the signal-to-noise ratio on the amplitudes and frequencies of the input and reference
signals have been investigated. Noise-induced enhancement of the heterodyning has been demon-
strated both for white noise and for high-frequency noise (with the power spectrum centered at the
frequency of the reference signal) added at the input.

PACS number(s): 05.40.+j, 02.50.—r, 84.30.Qi, 84.30.Vn

I. INTRODUCTION

One of the important physical problems of informa-
tion processing and transfer is how to control the signal-
to-noise ratio (SNR). Usually this ratio decreases with
increasing intensity of noise. However, under certain cir-
cumstances it behaves in the opposite way. The phe-
nomenon of the noise-induced increase (and subsequent
decrease) of the signal and of the SNR in the system was
called stochastic resonance [1]. It has attracted much at-
tention recently (see [2]). Most of the data on stochastic
resonance have been obtained for bistable systems driven
by noise and by a low-frequency periodic force. The onset
of stochastic resonance in these systems is related to the
fact that the probabilities W,,,, of transitions between
coexisting stable states (n,m = 1,2) increase exponen-
tially, in the case of Gaussian noise, with increasing noise
intensity D: W,,,,, < exp(—Gp /D) for large G, /D, where
G, is the characteristic activation energy of the transi-
tion from the state n (in the case of thermally activated
escape from a potential well G,, is the depth of the well,
G, = AU, and D is temperature). A low-frequency
external periodic force A cos 2t modulates the activation
energies, G, = G, +G! A cosQt, and as a result the tran-
sition probabilities are modulated too, with the strength
of the modulation being determined by the ratio A/D, so
that this modulation can be comparatively strong even
for small amplitudes of the force. In turn, the modula-
tion of W,,,,, gives rise to a modulation of the populations
of the stable states. For a particle in a double-well poten-
tial with equal well depths the mechanism of the latter
modulation is obvious: the force periodically makes one
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of the wells deeper than the other, and the system oc-
cupies it with a larger probability. Periodic modulation
of the populations of the wells results in a comparatively
strong modulation of the average value of the coordinate
of the system z, the amplitude of the oscillations being
proportional to the difference z; — z3 in the values of the
coordinate in the stable states z,,.

The above mechanism comes into play through fluctu-
ational transitions, i.e., through the noise, and the am-
plitude of the periodic signal correspondingly increases
with increasing noise intensity. Because it does so ex-
ponentially fast in a certain range of D, the SNR may
be expected to increase with D too. The mechanism is
most effective, provided (i) the stationary populations of
the states in the absence of the driving are nearly equal
to each other (3], and (ii) the frequency of the force is
small: it has to be very much smaller than the reciprocal
relaxation time of the system t;! in particular, so that
the transitions have a chance to occur over the period
27/Q (Wpm < ¢! for small noise intensities).

The frequency-selective response of bistable systems,
and also the fact that the SNR increases with increas-
ing noise intensity, makes it interesting to apply the
idea of stochastic resonance to heterodyning so as to ob-
tain a form of the phenomenon that is enhanced rather
than suppressed by noise. In heterodyning, two high-
frequency fields, one of them being an input signal and
the other a reference signal, are mixed nonlinearly to
generate a heterodyne signal at the difference frequency.
Mixing of this kind occurs quite generally in any non-
linear system. In most cases, however, the addition of
noise will result in a decrease in the amplitude of the
heterodyne signal (and its SNR) because the frequency
response of the system becomes correspondingly broad-
ened. Nonetheless, we show below that, in bistable sys-
tems of the kind that exhibit stochastic resonance (SR)
[1-3], the heterodyne signal (and SNR) can sometimes
be enhanced by an increase in the noise intensity. (Note
that, although bistability is not necessary for SR, which
can also occur in monostable systems [4], it is for the
bistable case that the largest noise-induced increases in
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the signal and SNR have been observed.) In this pa-
per we outline the theory and report the observation of
noise-enhanced heterodyning (NEH) in bistable systems
by means of analog electronic simulation.

The theory of NEH is developed in Sec. II. In Sec. III
the analog electronic simulations undertaken to test the
theory are described, together with relevant experimen-
tal details. The results are presented, compared with the
theoretical predictions, and discussed in Sec. IV. Con-
clusions are drawn in Sec. V.

II. THEORY

We shall illustrate the onset of NEH by consideration of
a simple model of an overdamped bistable system driven
by three time-dependent forces that stand, respectively,
for the reference and input signals, and the noise. The
motion of the system is described by the equation

dz

i U'(z) + Aresz cos wot

+ Ain(t) cos[wot + ¢(t)] + f(¢) . (1)

Here, the term proportional to A,er is the high-frequency
reference signal corresponding to a local oscillator of fre-
quency wp (the corresponding force is applied multiplica-
tively), and that proportional to A;,(t) is the modulated
high-frequency input signal (applied additively). The
functions A;,(t) and ¢(t) are slowly varying as compared
with coswpt, and it is their variation in time that has to
be revealed via heterodyning. The heterodyning can be
characterized by the low-frequency signal at the output,
z(V(t) = z(t) (the overbar stands for averaging over the
period 27 /wy), for A;, = const and ¢ = Qt+ const, with
Q < wo, i.e., for a monochromatic input signal whose
frequency wgo +  is slightly different from the frequency
wo.

We shall assume that the double-well potential of the
system U(z) has equally deep wells, which is most appro-
priate for standard stochastic resonance, and we choose
it to be of the form

U(x) = —32® + 1z*. (2)

The minima of the potential (2) (the stable states of
the system) lie at z, = (—1)", n = 1,2, and the char-
acteristic (dimensionless) relaxation time of the system
t, = 1/U"(z,) = 1/2. The analysis of heterodyning in
bistable systems is not limited to the particular form of
Egs. (1) and (2). The effect occurs in both overdamped
and underdamped systems. However, the explicit expres-
sions take on a simpler form for the model (1), (2), and
they are further simplified in the case where the frequen-
cies of the input and reference signals are high compared
with the reciprocal relaxation time of the system,

) - 3)

The term f(t) in (1) is a random force. It is supposed
to be a zero-mean Gaussian noise. We will allow for a
form of this noise that has two independent components,

wo >t (t, =

N[

at low and high frequencies, respectively, with the latter
being randomly modulated vibrations at frequency wyq:

f(t) = fur(t)+fur(t), fur(t) = Re [fHF(t) exp(—iwot)} .
(4)

The power spectrum ®pr(w) of the low-frequency noise
fLr(t) is assumed to be flat up to w ~ w. > t;! (w. may
be small compared to wp). The power spectrum ®yr(w)
of the high-frequency noise fyr(t) is assumed to be cen-
tered at wo and also flat over a range greatly exceeding
t-! (such a noise being of interest because it often occurs
in practice, e.g., resulting from the scattering of a radio
signal):

®Lr(w) = Dpp/7 forw S w,,

®yr(w) = Dgp/n for |w? — w§| < 2wowe  (we >t
2

’ dtf(t) exp(iwt)| . (5)

—-—T

®(w) = lim (477)~!

T—00

The power spectra ®(w) decay smoothly outside the in-
dicated regions.

For wg > ¢! the motion of the system consists of fast
oscillations at frequency wo (and its overtones) superim-
posed on a slow motion. Correspondingly, in the spirit
of [5], we shall seek the solution to (1) in the form

z=20 4 g0

(D = wy'! {A,efx(o) sinwot + Ajn(t) sin [wot + &(t)]

—Im|fur(t) exp(—iwot)]} , (6)

where the last term refers to the case of a high-frequency
noise. On substituting (6) into (1) we obtain an equation
for £(®). This equation contains terms oscillating at fre-
quencies wy, 2wy, and 3wy, and also slowly varying terms.
We shall assume the amplitudes of the forces Aef, Ain(t)
and also the noise intensity D sufficiently small that the
amplitudes of the vibrations of z at the overtones of wq
can be treated as small perturbations. Then the main
contribution to z(®) comes from the slowly varying terms.
The equation for the slow part of the coordinate takes on
the form

2(© ~ (D)

&) = —U'(z™D) + A(t) sinp(t) + FO(2), (7)
_ Aref X
Alt) = S Aw(®),
where

5O = furlt) - 5= I fiae (1),

®)(w) = D/x for w X w,, (8)
D =Dyr + (Afef/2w[2))DHF .

Here, ®(°)(w) is the power spectrum of the force f(©(t);
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we have assumed that Refyr(t) and Imfyr(t) are sta-
tistically independent of each other and have the same
intensity, and also that they are statistically indepen-
dent of fir(t). In deriving (7) we have neglected correc-
tions ~ (wot,)~! due to the nonlinearity of the potential
U(z): the dominant contribution to the right-hand side
of (7) comes from the dependence on z of the force corre-
sponding to the reference signal; also the spectral density

®ur(w) in the range of low frequencies w ~ ¢! has been
supposed very small and ignored.

For A(t),#(t) varying slowly over the time ¢, the dy-
namics of the system described by Egs. (2), (7), and
(8) has already been investigated in detail in the con-
text of stochastic resonance. It depends strongly on
the interrelation between the effective noise intensity D
and the depths of the potential wells for slow motion
AU, = Upax — U(zn) (Umax is the value of the po-
tential in the local maximum). For the potential (2)
AU; = AU, = AU = 1/4. For very small D/AU the
motion of the system is exclusively intrawell, and the
amplitude of the vibrations induced by the input signal
depends weakly on the intensity of the noise, so that the
SNR decreases with increasing D. For higher D/AU the
interwell transitions come into play, and the SNR may
increase with increasing D.

In the particular case of a periodic input signal, 4;, =
const, ¢ = Qt + const, the average smooth part of the
coordinate (z(*!)(t)) varies periodically at the low mod-
ulation frequency 2, and the power spectrum of the
coordinate contains § spikes at the frequencies n on
top of the broad spectrum. For small A o« A;, the
vibrations of (z(*)(t)) are practically monochromatic,
(z@V(t)) = ap + asiny(t), with their amplitude a and
phase ¥ given by the expression

asiny(t) = —AIm[x(Q)e **®)], ¢(t) = Qt + const .
(9)

For small noise intensities (AU > D) the susceptibility
x(€2) in the case of a symmetric double-well potential
U(z) is of the form [3,6]

1 %% (.’L‘g —:121)2

4D W —iQ (10)

Q)= ——

Here, W = W, + Wy « exp(—AU/D) is the relaxation
rate of the populations of the stable states. It is seen from
(9), (10) that, since W increases sharply with the noise
intensity D, the amplitude of the heterodyne signal at
the difference frequency €2 increases with noise intensity
in a certain range of D, too.

This noise-induced enhancement of the heterodyning
can be characterized by the dependence on D of the ra-
tio R of the intensity (area) of the 4 spike in the power
spectrum of the system at frequency €2, induced by the
force proportional to A, to the value of the power spec-
trum at the same frequency for A = 0. For Qt, < 1 but
for arbitrary /W the expression for the signal-to-noise
ratio R is of the form (cf. [6])

A%(zy — 21)2 W2 4 Q22 D2

R=
"D wyowed
D = 4D((l32 - :1,‘1)_2 )
Q,D<t;L, WD (11)

to lowest order in the small parameters in (11). It follows
from (11) (and also from the more general expression for
the SNR) that, in the range of noise intensities where

QDt, SW S ¢, (12)

the SNR increases with increasing noise intensity. The
increase is quite sharp, being nearly exponential. This
means that noise-enhanced heterodyning would be ex-
pected to arise in a bistable system, whether driven by a
low- or a high-frequency noise (or both).

An intuitive picture of the physical mechanism under-
lying NEH is as follows. The reference force provides a
modulation of the potential (—1/2)Aesz? cos wot which
is even in the coordinate, and therefore does not break
the symmetry of the system. The phases of the vibra-
tions 0zree(t) about the minima of the wells caused by
this signal differ by # (i.e., the vibrations are in counter-
phase). The situation is quite different for the input sig-
nal A;,. This signal, being additive, breaks the symmetry
of the potential, and the amplitude and phase of the pe-
riodic vibrations of the coordinate dz;,(t) at the signal
frequency wj, are the same in the absence of the refer-
ence signal for both wells (the vibrations are in phase).
When both forces are present, they combine nonlinearly,
giving rise to potential terms oscillating at combination
frequencies, and in particular to a term at the difference
frequency |wo—win| which is proportional, approximately,
to the product of dz,es X ;. This term defines the slow
motion of the system. Obviously, it is antisymmetric:
its sign is opposite for the two wells [of course, we have
to allow for cross terms in the time-dependent part of
the potential —(1/2)x2 A e cos wot — T Ajy, c08(Wint + Yin),
where 1, is a constant; the corresponding slow terms are
also antisymmetric].

The amplitude of the fast oscillations induced in the
system by the superimposed reference and input signals
varies slowly in time, as the effects of the individual sig-
nals tend alternately to reinforce or cancel each other.
These amplitude variations occur in antiphase between
the two wells: when the amplitude of the fast oscilla-
tion is relatively large in one well, it is relatively small in
the other, and vice versa. The particular well for which
the fast vibrations are of the larger amplitude at a given
time will also be the one from which fluctuational transi-
tions are most likely to occur. This is because the center
of oscillations is then shifted furthest towards the sad-
dle (much like the case of quasimonochromatic noise in
the adiabatic limit: see [7]). In the presence of noise,
therefore, there is an enhanced probability of an interwell
transition occurring once per half cycle of the difference
frequency, thereby effectively amplifying the heterodyne
signal in very much the same way as a low-frequency ad-
ditive signal can be amplified in conventional bistable SR

[2].
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III. ANALOG ELECTRONIC EXPERIMENTS
ON NOISE-ENHANCED HETERODYNING

The occurrence of NEH has been investigated experi-
mentally by means of a conventionally designed [8] ana-
log electronic circuit model of the system (1), (2). The
technique is in essence extremely simple: an electronic
model of the stochastic differential equations under study
is built, using operational amplifiers, multipliers, and
other standard analog components to perform the re-
quired mathematical operations of addition, subtraction,
multiplication, division, integration, etc. Its response to
stochastic and periodic forces is analyzed with the aid of
a digital data processor.

Figure 1(a) shows a block diagram of the circuit
used to model an overdamped bistable Duffing oscilla-
tor driven by external noise f(t) in the presence of a
signal Al cos(wy + Q')t' and a multiplicatively applied
reference signal A/ ;coswyt’. Here Al , A/ ; are the am-
plitudes of the signals in volts, f'(¢') is the actual value
of the noise applied to the circuit, and wj and t' are the
real frequency and time.

The actual differential equation for the voltage z’ in
the circuit was of the form

ro & _BoBy, Ry RsRy

dt'  Rg Rs.  100R; R4Rs.
Ry R:

10Rs R~3A'ref:r:' cos wyt'

+%A£n cos(wg + Q) + f'(t), (13)
2

where we have chosen

R, = R; = R3 = Ry = Ry = Rg = 10 kQ,

R5 = Rg =50 kQ, Re = 200 kQ, C1 = 30 nF

(cf. [8] for details of the operation of analog electronic
circuits used to simulate fluctuating nonlinear systems;
note that the output of the AD534 [9] analog multipliers
is internally divided by 10). To investigate experimen-
tally the enhancement of heterodyning by white noise this
circuit was driven by noise from a feedback shift-register
noise generator and by two sinusoidal periodic forces from
Hewlett-Packard Model 3325B frequency synthesizers.

The high-frequency noise needed for a second series
of experiments was produced by filtering broadband ex-
ponentially correlated noise n(t') from a feedback shift-
register noise generator with a circuit simulating an un-
derdamped harmonic oscillator frequency wy, shown in
Fig. 1(b). The output of the filter was quasimonochro-
matic noise (QMN) [7]; to suppress its low-frequency
components, which were undesirable in the present con-
text, the QMN was passed through the additional high-
pass filter formed by RpCp. The corresponding differ-
ential equations for the noise at the output of the filters
are of the form

d’f' R df' RioR
Ri0CoR1-C 10 10 f115 ., — ’
10C2ft13Cs e + Ry, 1393y Ri1 Ria s(t')
(14)
d / ' !
RDCD@[n(t ) —s(t)] =s(t), (15)

0 20 40 60

80 100 120
@

FIG. 1. Block diagrams of the electronic circuits used in
the simulations. (a) Circuit modeling an overdamped par-
ticle (1) in the potential (2): Fret(t') = Al.coswpt’ and
Fin(t') = Al, cos(wp + ')t'; the noise input f'(t') can either
be exponentially correlated quasiwhite noise or the output of
circuit (b), which is high-frequency narrow-band noise. (b)
Circuit used to convert quasiwhite noise into band-limited
noise. (c) Spectral density of the band-limited noise mea-
sured at the output of the circuit (b). The inset shows the
same spectrum expanded near its maximum: the bar shows
the smallness of the reciprocal relaxation time compared to
the width of the peak; and the arrows indicate the abscissa
positions of wo and (wo + ).
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with
Ryo = Ry1 = Ri13 = Ry4 = Rys = 22k,
R12 =220 kQ, Cz = 03 =0.5 IIF y
Rp =100kS2, Cp =1nF, 7p = RpCp .

The correlation time 7x of the noise (') was much
smaller than all other integration times in the circuits

™~ <12 L /T < 47y,
71 = R1C1, 72 = R19C2 = R13C5, 21V = Ry3/R,, .

When written in terms of 77, 72, IV, with account taken of
the interrelations between the resistances R;, the equa-
tions for ', f', 7 take the form

/
47'1% =z’ — 2% + 24! ;2 coswit'
+4A{, cos(wgy + Q) + 4f'(¢) (16)
d2fl dfl
gt g+ =s(t), (17)
d ! ! !
D o [n() — ()] = s(t') . (18)

After the scaling
t' = 4nt, wy - we/4m, Y — Q)47
Al — Aret/2, Al — Ain/4,
f'") = far(t)/4, I' > (r2/4m)T,
(T1/72) > @0/4, (11/7D) = wp/4,

and changing ' — z, Eq. (16) goes over into (1) with
the effective intensity of the high-frequency noise fur(t)
at the frequency wp being given to an excellent approxi-
mation by

D — a)gDﬂ (Qo/wD)z
HE ™ 4121 + (@o/wp)?] ’

(19)

where D, is the effective intensity of the noise 7(t') on the
input of the circuit Fig. 1(b). In the experiment wy was
nearly equal to wy. The actual form of the input band-
limited noise is shown in Fig. 1(c). It is evident from this
figure and the above analysis that the power spectrum of
high-frequency noise has the form of that for a damped
oscillator centered at wy with a suppressed low-frequency
wing. In addition to the band-limited noise the circuit
was again driven by two sinusoidal periodic forces from
Hewlett-Packard 3325B frequency synthesizers.

In each case, the response of the circuit, a time-varying
voltage representing x(t), was digitized (12-bit precision)
typically in 1024-word (1k) or 2k blocks and analyzed
using a Nicolet LAB80 data-processor computer. The
required spectral densities were computed by means of
a standard fast-Fourier-transform (FFT) routine. The
signal-to-noise ratio, defined in the usual way [10] as the
ratio of the peak height at the signal frequency to the
broadband noise level at the same frequency, was then

extracted by measuring the contents of relevant processor
“bins.”

1939

IV. RESULTS AND DISCUSSION

A. Heterodyning enhanced by white noise

In Fig. 2 the theory and experimental data for the
dependence of the amplitude of the heterodyne signal
S = a? (9) and the SNR R (11) on noise intensity are
compared for the case of the exponentially correlated
noise. In fact, the cutoff frequency w,. of the noise was
high, and it exceeded wp in some of the experiments;
no dependence on w. was observed for w. > t 1, so it
would be reasonable to call this noise white [we notice
that the effect of its high-frequency components is mi-
nor: according to (8) its contribution is of the order of
(Aref/wo)? ~ 5 x 10™* in the experiment]. It is clearly
seen that the dependence of the signal amplitude on D
is of the form of an asymmetric resonant curve, which is
extremely steep on the small-D side. This form is typi-
cal for stochastic resonance [2]. For small D, where the
system is effectively confined to one well of the potential,
the signal magnitude corresponds in effect to the value
it would have for heterodyning in a single-well nonlinear
potential, and is extremely small. The dependence of the
SNR on D (inset) is also similar to that seen in stochastic
resonance: for very small D where the interwell transi-
tions do not come into play, R decreases with increasing
D, but then it displays a sharp increase. We notice that
the maximum of R vs D is shifted to higher noise intensi-
ties compared to that of the amplitude of the heterodyne
signal. The experimental data are in good qualitative
and quantitative agreement with the simple theory out-
lined in Sec. II (curves), without any adjustable param-
eters [we have used expressions that allow for corrections
~ D/AU omitted in (10), (11), cf. [6]].

6 T 4 LR T T —1
30 R H 4
o —
° -‘ —
- oﬂ ° ° H4
& AL
2H o 1

o 9005 01 015 0.2—
T..m[ﬂ

FIG. 2.

Normalized heterodyne signal S and signal-to-
noise ratio R (inset) as functions of the noise intensity D
for wo = 1.885, 2 = 0.008. The value of S is determined by
the ratio of the squared amplitude of the heterodyne signal
to the squared amplitude of the scaled input signal A(t) [see
Eq. (7)]. The boxes are the experimental data; the curves
represent the theory, which has been dotted in the range of
large D where it is only qualitative.
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FIG. 3. Experimental dependence of the SNR, R, on the
squared amplitude of the reference signal for the noise inten-
sities D = 0.015 (boxes) and D = 0.14 (circles); the carrier
frequency wo = 1.885, and the difference frequency 2 = 0.008.
The inset shows the dependence of R on the squared ampli-
tude of the input signal, under the same conditions.

It follows from (7), (11) that the SNR, for a given ef-
fective noise intensity D, should be proportional to the
squared amplitudes of both the reference and input sig-
nals, and inversely proportional to the squared reference
frequency wp. These predictions have been observed to
hold over a broad range of parameters. The Fig. 3 inset
demonstrates the linear dependence of the experimen-
tal values of the SNR at the difference frequency on the
squared amplitude of the high-frequency input signal A2

m’
a feature that is very important from the viewpoint of

AO0— 771 T T T T T 1
. ‘0 12— A T T
R N {1 7]
X \ . R
30, | 8 * X 1
. \ R .
',o ‘\‘O - \\_ B
R Y 4 H,x3 Nx.ﬁ -
R i 7S ]
RO0—:o . Io " Fooswoqd |
’ ‘o 0 4 8 i
Lo ) O @o
10~ - -
O x3
| '-0% _
.00,
L1 1 |°°31°'®?°'®ow
0 2 4 2 6 8 10
o
FIG. 4. The dependence of SNR on the squared frequency

wo of the reference signal for the noise intensities D = 0.015
(circles) and D = 0.14 (lozenges); the difference frequency
© = 0.008. The dashed and solid lines are proportional to
wy ? [the theory refers to the range wo >> 1, for the potential
(2)]. The inset shows the same data with a magnified ordinate
scale.

signal processing. The lower set of data refers to a value
of the noise intensity D corresponding approximately to
the maximum of R vs D, whereas the upper one corre-
sponds to D lying on the initial descending part of the
R(D) curve. Quite similarly (Fig. 3, main section), the
proportionality of R to the squared amplitude of the ref-
erence signal A2; has been clearly observed throughout
broad ranges of the noise intensity D and of the frequen-
cies wg, 2 (we notice that for very small difference fre-
quencies (2 there arises a nonlinearity of R vs A%, AZ for
small D, similar to the situation in stochastic resonance
[3]). The dependence of the SNR on wy is seen from Fig.
4 to be very close to w0_2 up to wot, = 1 for the system

under consideration.

B. Heterodyning enhanced by a high-frequency noise

The experimental results presented in Figs. 2—4 relate
to the case of a broadband (white) noise at the input of
the circuit. In heterodyning it is often important to allow
for the effects of a noise whose spectral density peaks
around the frequency wg of the signal. For this reason,
the enhancement of heterodyning by high-frequency noise
is of the utmost interest in view of possible applications.
It follows from the theoretical results discussed above
that this case has much in common with the white-noise
one, provided that the power spectrum of the noise is
flat over a range exceeding t; ! and decays steeply at
small frequencies ~ ¢!, the only difference being in the
dependence (8) of the effective noise intensity D on the
squared amplitude of the reference signal.

It is clear from the inset of Fig. 1(c) that the power
spectrum of the high-frequency noise in the experiment
was indeed flat over a range greatly exceeding ¢!, and
that ¢! greatly exceeded the frequency detuning be-
tween the reference and the carrier frequencies. Near
the maximum the shape of this power spectrum could
be described by a Lorentzian, of half-width I'. After
demodulation this spectrum converts into exponentially
correlated noise with correlation time ~ I'"!. Given that

T
4+ .
R
2L |
I
0.0 0.15
FIG. 5. Signal-to-noise ratio R as a function of noise in-

tensity D, demonstrating noise-enhanced heterodyning for
high-frequency noise. The boxes and solid line represent ex-
periment and theory for wo = 109.091, 2 = 0.0017. Beyond
its range of validity, where the theory is merely qualitative, it
is shown dotted.
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[ > t;1 > Q, this noise may therefore be considered as
white for our circuit. In these limits we can apply the
theory of the noise-enhanced heterodyning described in
Sec. II. The data on the SNR in heterodyning for high-
frequency noise are shown in Fig. 5. They are similar
to the data for the white-noise-driven system: the SNR
for the heterodyne signal clearly displays noise enhance-
ment, and the data are in qualitative agreement with the
theory. The discrepancy with the theory is attributable
to the presence of relatively weak low-frequency noise at
the output of the circuit, Fig. 1(b).

C. The frequency dependence of NEH

Of special interest is the dependence of the SNR on
the modulation frequency . It follows from (11) that
in the interesting range where R increases sharply with
noise intensity, i.e., in the range where W > Qt,.D and

DX AU, R also increases quite sharply with €2, from the
value that corresponds to the SNR in the neglect of the
intrawell motion, R = Ry ~ mA?W/4DD for very small
Q, up to the value that corresponds to the SNR in the ne-
glect of the interwell transitions, R ~ mA%?/4D. A simple
way to suppress such frequency dispersion in the SNR is
to apply two-state filtering, passing the output through
a Schmitt trigger, so that the continuous system is ef-
fectively replaced by a two-state one, i.e., the coordinate
is supposed to take on either of two values that corre-
spond to the positions of the stable states, and it takes
on one or the other of them when the real continuous
coordinate is in the vicinity of the corresponding stable
state (such filtering is often considered in the context of
stochastic resonance, cf. [1,2]). For @ « t;7! the theoret-
ical value of the SNR at the output of a two-state filter is
given approximately by the value of R (11) for @ = 0 (or
for t, = 0: the intrawell relaxation is “infinitely fast”).
The experimental frequency dependence of R on 2 for
the filtered signal (boxes) and without filtering (circles)
is shown in Fig. 6. It can be seen that, for small /9,
the dispersion is almost eliminated by the filtration; the
remaining dispersion (of opposite sign) seen at higher fre-
quencies is attributable to a frequency dependence of the
modulation amplitude of the activation energies of the
transitions.

V. CONCLUSION

We have shown that, in close analogy to conventional
SR [2], NEH in a bistable system can produce a very
substantial enhancement of the heterodyne signal over
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FIG. 6. The frequency dispersion of the SNR for noise-

enhanced heterodyning before (circles) and after (boxes) ap-
plying two-state filtering; noise intensity D = 0.055, the car-
rier frequency wo = 5.02. The solid and dashed-dotted lines
represent theory.

that obtained for heterodyning in, e.g., a single-well non-
linear system. The same is not true, however, of the
SNR. Notwithstanding the huge noise-induced rises seen
in R(D) in NEH, and in conventional SR, the SNR does
not quite reach the value it would have for the same D in
a single-well system. Nonetheless, we note that NEH of-
fers a method by which the SNR can be protected against
changes in the noise on the signal, if the average operat-
ing point is chosen (see Fig. 2 or 5) to be very close to
but slightly beyond the maximum in R(D). In applica-
tions where it is important for the SNR to be stable, this
could prove to be a useful feature.

In conclusion, we have demonstrated, theoretically and
experimentally, that bistable systems can be used to ob-
tain heterodyning in which not only the amplitude of the
heterodyne signal at the output, but also the signal-to-
noise ratio, increase dramatically with increasing inten-
sity of the noise at the input.

ACKNOWLEDGMENTS

We are grateful to N. Abraham for a valuable discus-
sion. The work was supported by the Science and Engi-
neering Research Council (U.K.), by the European Com-
munity, by the Royal Society of London, and by the Gos-
standart of Russia. M.L.D., G.P.G., and D.G.L. grate-
fully acknowledge extremely warm hospitality at Lan-
caster University.

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14,
L453 (1981); C. Nicolis, Tellus 34, 1 (1982); R. Benzi, G.
Parisi, A. Sutera, and A. Vulpiani, ibid. 34, 10 (1982).

[2] J. Stat. Phys. 70, No. 1/2 (1993), special issue, stochastic
resonance, edited by F. Moss, A. Bulsara, and M. F.

Schlesinger.

(3] M.I. Dykman, R. Mannella, P.V.E. McClintock, and
N.G. Stocks, Sov. Phys. JETP Lett. 52, 141 (1990).

[4] N.G. Stocks, N.D. Stein, and P.V.E. McClintock, J. Phys.
A 26, L385 (1993).



1942 M. I. DYKMAN et al. 49

[5] L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed. (Perg- edited by F. Moss and P.V.E. McClintock (Cambridge
amon, Oxford, 1978). University Press, Cambridge, England, 1989), Vol. 3, p.
[6] M.I. Dykman, R. Mannella, P.V.E. McClintock, and 222; and P.V.E. McClintock and F. Moss, in ibid. p. 243.
N.G. Stocks, Phys. Rev. Lett. 68, 2985 (1992). [9] The AD534 analog multiplier is from Analog Devices Inc.,
[7] M.I. Dykman, R. Mannella, P.V.E. McClintock, N.D. Box 9106, Norwood, MA 02062.
Stein, and N.G. Stocks, Phys. Rev. E 47, 3996 (1993). [10] B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev.

[8] L. Fronzoni, in Noise in Nonlinear Dynamical Systems, Lett. 60, 2626 (1988).



